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1 Preliminaries

A smooth manifold is a topological manifold that is endowed with some sort of
smooth structure. This means that there exists an atlas of charts that are
smoothly compatible with each other via transition maps. The structures of
these manifolds will vary, but not in ways that are particularly interesting. How-
ever, in the holomorphic category, we find that almost everything will change.
This section will cover the basics of complex manifolds and their structure.

1.1 Complex Manifolds

Definition 1. A complex manifold is a smooth manifold whose transition
maps are holomorphic. This means that it is continuous and each of complex-
component valued functions have complex partial derivatives with respect to each
of the independent complex variables z1, ..., zn.

The transition maps being holomorphic here is important as it will introduce
a different structure that we will now discuss. If we let M be a 2n−dimension
topological manifold, we let (U,φ) and (V, ψ) denote two coordinate charts
defined on M . We say that U and V are holomorphically compatible if
U ∩ V = ∅ or both transition maps are holomorphic under φ(U ∩ V ), ψ(U ∩ V )
as open subsets of Cn. A given holomorphic atlas is an atlas wherein any two
charts within the atlas are holomorphically compatible with each other. A holo-
morphic structure on M is a maximal holomorphic atlas. Then, this finally
gives us the complete definition of a complex manifold. An n-dimensional
complex manifold is a 2n-dimensional topological manifold endowed with a
holomorphic structure.

Example 1. Suppose thatM is an n-dimensional complex manifold and let U ⊆
M be an open subset. Then, we can define a canonical holomorphic structure
on U given by all of the holomorphic charts of M that contain U . Given this
holomorphic structure, U becomes an open submanifold of M.

It is not immediately obvious how to define functions and differentials on
these new manifolds that we have defined. To do so, we need to extend some of
the ideas of real smooth manifolds to complex ones. This is where we need to
be able to ”complexify” our spaces somehow.

1.2 Complexification and Almost Complex Structures

1.2.1 Complexification

Given a complex function
f = u+ iv

We want to write its differential as

df = du+ idv
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However, this is not our usual one-form(as we have encountered it in real man-
ifold theory). Thus, this forces us to make the following definition

Definition 2. Suppose V is a real vector space, the complexification of V,
denoted by VC, is the vector space V ⊕ V with multiplication given by

(a+ ib)(u, v) = (au− bv, av + bv) a+ ib ∈ C

addition is defined as usual. This turns VC into a vector space over C.

Note that we will have an isomorphism from V onto the subspace V ⊕{0} ⊆
VC, given by the mapping ψ : u 7→ (u, 0). This means that we can identify
V with its image under ψ meaning that we can consider V to be a real-linear
subspace of VC. Under this identification, we can then view VC to be all the
linear combinations of V with complex coefficients. From this, we can also
determine a basis for VC. If we have a basis for V given by b1, ..., bn, then a
basis for VC is given by {(b1, 0), ..., (bn, 0)}. For example, this means that Rn

can be identified with Cn. Note that this idea of complexification can extend
to linear mappings as well.

Definition 3. Suppose that f : V → W is a linear map between real vector
spaces. Then, this will extend to the complexification of f, a complex-linear
map fC : VC →WC such that fC(u+ iv) = f(u) + if(v).

Note that the complexification of a vector space V and a linear map f gives
us a functor from the real-valued vector spaces to the complex-valued ones. This
can be seen by the following diagram

V VC

W WC

U UC

complexification

f fC

complexification

f ′ f ′
C

complexification

Now, we are well-equipped to define a vector bundle in the complex sense.

Definition 4. Suppose M is a topological space. A complex vector bundle
of rank k over M is a topological space E together with a continuous, sur-
jective map π : E → M such that each fiber Ep = π−1(p) has the structure
of a k-dimensional complex vector space. Furthermore, for each p ∈ M , there
exists a neighborhood U over which there exists a local trivialization. This is
a homeomorphism Φ : π−1(U) → U × Ck which restricts to an isomorphism
Eq → {q} × Ck, q ∈ U .
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1.2.2 Almost Complex Structures

From here, we want to be able to begin defining complex structures on tangent
spaces, as the end goal is to establish what it means to have a ”holomorphic
tangent bundle”. To do this, we need to have some more tools and definitions
at our disposal.

Definition 5. Suppose that V is a vector space over R. Then a complex
structure on V is a real-linear injective homomorphism J : V → V such that
J ◦ J = −Id.

Proposition 1. Properties of complex structures. Suppose V an n-dimensional
R vector space equipped with a complex structure J and VC is the complexifica-
tion. Then

1. J is an isomorphism

2. The eigenvalues of J are +i, -i

3. J is diagonizable

4. If V’ an eigenspace of +i and V” the eigenspace of -i, then VC = V ′⊕V ′′.

Proof. 1. We do this by showing both injectivity and surjectivity. To show
injectivity:

v ∈ ker J =⇒ −v = J(J(v)) (by def of J) = J(0) = 0 =⇒ v = 0

To show surjectivity, suppose that v ∈ VC. Let w = −J(v):

J(w) = J(−J(v)) = −J(J(v)) = v

2. Let λ ∈ C be an eigenvalue of J . Then for v ∈ VC

−v = J(J(v)) = J(λv) = λJ(v) = λ2v

which implies that λ2 = 1.

3. To do this we just claim that (x+ i)(x− i) is the minimal polynomial of
J .

(J + i)(J − i) = J2 − ij + ij − i2 = −id + id = 0

4. This follows directly by what we have proved in (1)-(3)

Definition 6. Let M be a smooth manifold and suppose that J is a smooth
(1, 1) tensor field on M . Let p ∈ M and suppose J(p) ∈ EndR(TpM). For all
p ∈M , J(p)2 = −idTpM J is an almost complex structure on M

This definition is saying that a manifold M with a complex structure J
defined on its tangent bundle is an almost complex structure on M . We talk
more about tangent bundles below.
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1.2.3 Complexified Tangent Bundles and the Holomorphic Tangent
Bundle

We can now begin to define the idea of a holomorphic tangent bundle. To do so,
we start by defining what a complexified tangent space is. Suppose that M is a
complex manifold. Let p ∈M . Let U be a neighborhood about p and let D be
an open subset of Cn. Then, there exists an isomorphism f : U → D such that
f(p) = 0. This gives us a local holomorphic coordinate system z1, ..., zn centered
about p. Suppose that xj , yj are smooth, real-valued functions on U . We can
then write zj = xj+ iyj . This then gives us an isomorphism h : U → R2n. Then
in this setting we are ready to define the tangent spaces.

Definition 7. The real tangent space at the point p is given by

TpM = R
{

∂

∂x1
, ...,

∂

∂xn
,
∂

∂y1
, ...,

∂

∂yn

}
Then, the complexified tangent space at point p is given by

Tp,CM = C
{

∂

∂x1
, ...,

∂

∂xn
,
∂

∂y1
, ...,

∂

∂yn

}
Alternatively, the complexified tangent space at point p can be written as

Tp,CM = C
{

∂

∂z1
, ...,

∂

∂zn
,
∂

∂z̄1
, ...,

∂

∂z̄n

}
where

∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
Writing the complexified tangent space in this way gives rise to the following
definition.

Definition 8. The two subspaces

T ′
pM = C

{
∂

∂z1
, ...,

∂

∂zn

}
T ′
pM = C

{
∂

∂z̄1
, ...,

∂

∂z̄n

}
are called the holomorphic and antiholomorphic tangent spaces respectively.
These two subspaces will gives us the following decomposition

TC,pM = T ′
pM ⊕ T ′′

pM

Now, we have the tools to begin defining holomorphic tangent bundles.

Definition 9. The holomorphic tangent spaces T ′
pM are the fibers of a holo-

morphic vector bundle T ′M . This is the holomorphic tangent bundle of
M .
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To see this, we need to be able to describe a set of transition functions for
the tangent bundle. Suppose that the dimension of M is n and cover M by
coordinate charts φα : Uα → Dα where Dα ⊆ Cn open. Let the following be
the transition maps between the charts

ψα,β = φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ)

Then, its differential is then a holomorphic mapping from φβ(Uα ∩ Uβ) into
GLn(C). Denote this differential by J(hα,β). Then, we claim the following are
the transition functions for T ′M .

gα,β = J(hα,β) ◦ φβ

To verify this we need to check the compatability conditions.

gα,β · gβ,γ = (J(hα,β ◦ φβ)) · (J(hβ,γ) ◦ φγ)

= ((J(hα,β) ◦ hβ,γ))
= J(hα,β ◦ hβ,γ) ◦ φγ

= J(hα,γ) ◦ φγ = gα,γ

Thus, gα,β are indeed the transition functions for a holomorphic vector bundle
π : T ′M →M .

Proposition 2. Suppose V is a finite-dimensional complex vector space with
its standard holomorphic structure. For each a ∈ V , there is a canonical, basis
independent, complex linear isomorphism

Φa : V ∼= T ′
aV

In particular, this isomorphism is natural. If L : V → W is a complex-linear
map between finite-dimensional complex vector spaces, then the folowing diagram
will commute for each a ∈ V .

V T ′
aV

W T ′
L(a)W

Φa

L D′L(a)

ΦL(a)

Proof. Let a,w ∈ V . We define the following holomorphic map.

λa,w : C → V τ 7→ a+ τw

We define the mapping Φa : V → T ′
aV by the following

Φa(w) = D′(λa,w(0))

(
∂

∂τ
|0
)

(1)
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From this definition, we can see that this is independent of any choice of basis
for V . Thus, we choose a basis for V and let (z1, ..., zn) be the corresponding
linear coordinates. Then Φa has the coordinate representation

Φa(w
1, ..., wn) = wj ∂

∂zj
|a

which gives us a complex-linear isomorphism. Let W be a finite-dimensional
complex vector space and L : V → W be a complex-linear map. Then using
any linear coordinates (ζ1, ..., ζm) for W we see that

D′L(a)(Φa(w
1, .., wn)) = Lj

kw
k ∂

∂ζj
|L(a)

= ΦL(a)(L(w
1, ..., wn))

which shows that the diagram commutes.

As a summary, we have defined the following new(and old) bundles arising
from complex manifold structures.

1. TM: this is the familiar tangent bundle of a smooth manifold, and it
is a real vector bundle of rank 2n.

2. TCM: this is the complexified tangent bundle, which is a complex
vector bundle of rank 2n.

3. T’M: this is the holomorphic tangent bundle, which is a complex
vector subbundle of TCM of rank n. At each point of its fiber, it is
the i−eigenspace of JM .

4. T”M: this is the antiholomorphic tangent bundle, which is the second
complex vector subbundle of TCM of rank n. At each point of its fiber
it is the −i-eigenspace of JM .

5. TJM: this is the ordinary tangent bundle of M with the complex
structure JM , turning it into a complex vector bundle of rank n.

2 Kähler Metrics and Manifolds

Now that we have defined complex manifolds, and some complex structures
that arise from them, it is also important to examine the relationship between
complex structures and metrics on a tangent bundle. To do this, we introduce
Kähler metrics as a special case of Hermitian metrics and then study the mani-
folds that admit the Kähler metric. To do this, we must first introduce what a
Hermitian metric is.
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2.1 Hermitian Metrics

Definition 10. SupposeM is a complex manifold with an almost complex struc-
ture J . Then, the Hermitian fiber metric on TJM is a map

h : Γ(TJM)× Γ(TJM) → C∞(M ;C)

such that the following properties are satisfied

1. h is bilinear over C∞(M ;R)

2. h(JX, Y ) = ih(X,Y )

3. h(X, JY ) = −ih(X,Y )

4. h(Y,X) = h(X,Y )

5. h(X,X) > 0 when X ̸= 0

Now that we have the definition of a Hermitian fiber metric, we want to have
a deeper understanding of it. We first examine the real part of a Hermitian fiber
metric.

Lemma 1. If M is a complex manifold and h is a Hermitian fiber metric on
TJM then g = Re h is a Riemannian metric on M .

Proof. Note that g is defined to be smooth, positive definite, and bilinear over
C∞(M ;R). Thus, we just need to show that it is symmetric.

g(X,Y ) =
1

2
(h(X,Y ) + h(X,Y ))

=
1

2
(h(X,Y ) + h(Y,X))

Now we move on to examining the imaginary part.

Lemma 2. Suppose M a complex manifold and h a Hermitian fiber metric on
TJM then ω = -Im h is a 2−form of type (1, 1).

Proof. To do this we just need to prove antisymmetry and that ω is indeed of
type (1, 1). Antisymmetry follows by the following

ω(X,Y ) =
1

2i
(h(X,Y )− h(X,Y ))

=
−1

2i
(h(X,Y )− h(Y,X))
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which will change in sign if Y and X are swapped. To show that ω is of type
(1, 1), we have that from how h is defined that h(JX, JY ) = (i)(−i)h(X,Y ) =
h(X,Y ) for all real vector fields X,Y . Then

ω(JX, JY ) = −Im h(JX, JY )

= −Imh(X,Y )

= ω(X,Y )

Now that we have defined a Hermitian fiber metric, we can define the Her-
mitian metric.

Definition 11. A Hermitian metric on a complex manifold M is a Rieman-
nian metric where J is orthogonal. A manifold that is equipped with a Hermi-
tian metric is called a Hermitian manifold. If we have a Hermitian manifold
(M, g), the 2−form given by ω = g(J ·, ·) is the fundamental two-form of the
Hermitian metric

Similar to the Riemannian metric, we have the following result for the Her-
mitian metric.

Lemma 3. Every complex manifold can be endowed with a Hermitian metric

Proof. Let M be a complex manifold and suppose that g0 is an arbitrary Rie-
mannian metric on M . Suppose that g is another Riemannian metric given
by

g(X,Y ) = g0(X,Y ) + g0(JX, JY )

but then note that g(JX, JY ) = g(X,Y ) and we are done.

Now that we have defined what a Hermitian metric is, we can define the
Kähler metric.

2.2 The Kähler Metric and Kähler Manifold

Definition 12. A Kähler metric on a complex manifold is a Hermitian metric
where its fundamental 2−form ω is closed. A complex manifold endowed with a
Kähler metric is a Kähler manifold.

Note that every Hermitian metric can be determined by its fundamental
2-form, meaning that we can also define a Kähler metric using it.

Definition 13. A Kähler form on a complex manifold is a smooth, closed,
positive (1,1)-form.

Note that every Kähler form will determine a Kähler metric: g = ω(·, J ·).
Furthermore, since a Kähler form is closed and real, it will determine a real
cohomology class, the Kähler class, [ω] ∈ H2

dR(M ;R). Now, we proceed to
define curvature with Kähler metrics.
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2.2.1 Curvature of Kähler Metrics

We have studied the Riemann curvature tensor Rm and its identities. On a
Kähler manifold, Rm will have additional symmetries.

Theorem 1. The curvature tensor of a Kähler metric will satisfy the following
symmetries for all W,X, Y, Z ∈ Γ(T ′M).

Rm(W,X, ·, ·) = Rm(·, ·,W,X) = 0 (2)

Rm(W̄ , X̄, ·, ·) = Rm(·, ·, W̄ , X̄) = 0 (3)

Rm(W, X̄, Y, Z̄) = Rm(Y, X̄,W, Z̄) (4)

Rm(W, X̄, Y, Z̄) = Rm(W, Z̄, Y, X̄) (5)

Proof. Let Z,W be sections of T ′M and U, V complex vector fields. Then, since
the Levi-Civita connection will map Γ(T ′,M) to itself we have that

R(U, V )Z = ∇U∇Z −∇V ∇UZ −∇[U,V ]Z

Then, this implies that

Rm(U, V, Z,W ) = g(R(U, V )Z,W ) = 0

since g will kill off pairs of sections of T ′M . This shows the result of (2).
Conjugation gives us (3). Furthermore, for sections W,X, Y, Z of T ′M , the
algebraic Bianchi identity will give us

0 = Rm(W, X̄, Y, Z̄) +Rm(X̄, Y,W, Z̄) +Rm(Y,W, X̄, Z̄)

= Rm(W, X̄, Y, Z̄)−Rm(Y, X̄,W, Z̄)

this gives us (4). Applying the identity Rm(W,X, Y, Z) = Rm(Y,Z,W,X)
similarly will gives us (5). Now that curvature, and Kähler manifolds have been
introduced, we can finally begin to talk about Ricii and Scalar Curvatures.

3 Ricci and Scalar Curvature

Definition 14. For a Riemannian manifold, the Ricci curvature is the co-
variant 2-tensor field defined by

Rc(X, ) = tr(Z 7→ R(Z,X)Y )

It follows the Riemann curvature tensor is symmetric. In terms of a local frame,
it is given the components

Rab = Rc
cab

Definition 15. The scalar curvature is the real-valued function, S = gabRab

on a local frame, such that it is defined by raising an idenx of Rc and taking the
trace.
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Then, we can also express the Ricci and scalar curvatures using holomorphic
coordinates. The following are the coordinate expressions

Rc = 2Rjk̄dz
jdzz̄k S = 2gjk̄Rjk̄ (6)

where
Rjk̄ = Rm̄

m̄jk = R−l
jk̄l

= −∂j∂k̄ log(det g)

The following result follows directly from this

Lemma 4. On a Kähler manifold, the Ricci tensor is invariant under J. This
means that for all complex vector fields X and Y

Rc(JX, JY ) = Rc(X,Y )

This gives us the following

Proposition 3. The Ricci Form Let (M,G) be a Kähler manifold and Rc its
Ricci curvature. We define a 2-tensor field ρ in the following way

ρ(X,Y ) = Rc(JX, Y ) (7)

and is a closed (1, 1) form. It is called the Ricci form of g

Proof. We want to show that ρ is antisymmetric, closed, and a (1, 1)-form. We
use the previous lemma to show that ρ is antisymmetric.

ρ(X,Y ) = Rc(JX, Y ) = Rc(J2X, JY )

= −Rc(X, JY )

= −Rc(JY,X)

= −ρ(Y,X)

Furthermore, we can express ρ using local holomorphic coordinates

ρ = iRjk̄dz
j ∧ dz̄k = −i∂j∂k̄ log(det g)dzj ∧ dz̄k = −i∂∂̄ log(det g)

which is a (1, 1)-form. Note also since ∂ ◦ ∂̄ = d ◦ ∂̄, ρ is also locally exact and
so it is closed.

The Ricci form has a relationship with the Chern connection as exhibited
by the following theorem.

Theorem 2. Let M be a Kähler manifold. Then, the Ricci form is equal to 2π
times the first Chern form of the Chern connection on T ′M .

Proof. Suppose ∇′ is the Chern connection on T ′M with respect to the Hermi-
tian fiber metric. Recall that ∇′ is equal to the restriction of the Levi-Civita
connection ∇. We want to compute its first Chern form. To do so, we work
in holomorphic coordinates (z1, ..., zn) and that the connection forms θkj are
determined by

θlk(X)∂l = ∇′
X∂k = Γl

jkX
j∂l
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which gives us that
θlk = Γl

jkdz
j

Then, we have that the Chern form is determined as follows

c1(∇′) =
i

2π
dθll =

i

2π
d(Γl

jldz
j)

so that by what we have done above, this shows that

c1(∇′) =
i

2π
d∂ log(det g) =

i

2π
∂̄∂ log(det g) =

1

2π
ρ

3.1 The Calabi-Yau Theorem

A big theorem arises from the study of the Ricci form. It was conjectured in
1954 by Eugenio Calabi that if we have a compact Kähler manifold, and ρ is a
closed (1, 1)−form representing the cohomology class 2πcR1 (T

′M), then there is
a Kähler metric in the same Kähler class whose Ricci form is equal to ρ. In other
words, Calabi was examining whether or not every form representing c1(M) is
the Ricci form of a specific Kähler metric on M coming from one cohomology
class. This conjecture was proved by S.T. Yau twenty years later in 1978. The
conjecture has become known as the Calabi-Yau Theorem, and it is stated more
formally below.

Theorem 3. Calabi-Yau Theorem Let (M, g) be a complex Kähler mani-
fold with Kähler form ω. If ρ is any closed (1, 1)−form representing 2πcR1 (T

′M),
then there exists a unique Kähler metric on M whose Kähler form is cohomol-
ogous to ω and has the same Ricci form as ρ.

This theorem actually requires quite a lot of PDE theory that would be
too much to talk about here. Nonetheless, a consequence of this theorem is
the existence of Ricci flat Kähler manifolds, called Calabi-Yau manifolds. A
metric isRicci flat if its Ricci curvature is zero for every Kähler class. Physicists
uses Calabi-Yau manifolds to study super-string theory.
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